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ABSTRACT

In this work we construct a Markov partition for transitive Anosov flows, such
that the measure of the boundary of the partition is zero. Symbolic dynamics
for these flows is also developed.

In this paper we construct a Markov partition for transitive Anosov flows
(which we call C-flows) on smooth Riemann manifolds. A partition of this type
was constructed by Adler and Weiss in [ 1] for a hyperbolic automorphism of a
two-dimensional torus. Then Sinai [13], [14] used successive approximations
to define and construct a Markov partition for arbitrary C-diffeomorphisms.
Bowen [5] modified Sinai’s definition and, using the same method, constructed
a Markov partition for the Axiom A diffeomorphisms of Smale, In the case
of C-flows on three-dimensional manifolds, a construction of Markov partitions
was given in [10]. Bowen then [7] carried over his proof for diffeomorphisms to
the case of A-flows. In Section 2 we shall briefly describe the successive stages
of Bowen’s construction, omitting the proofs of certain intuitively obvious facts
which are presented exhaustively in [5]. In Section 3 we shall prove that for
C-flows of class C* the boundary of the elements of the Markov partition has
Lebesgue measure 0. This was proved for C-diffeomorphisms by Sinai [41].
No proof of this fact is given in Bowen’s paper.

In Section 4 we study symbolic dynamics for a C-flow {T*} on W. The Markov
partition enables us to construct a special flow S* (see [12]) in W = {(«,?).
weQ, 0 <t <F(w)}, over the space Q of sequences of an intrinsic Markov
chain (see [9]) with the natural topology, a shift ¢ in Q and a positive function
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F(w) satisfying a Holder condition, in such a way that there is a continuous
mapping ¢: W — W such that T'¢ = ¢S', and o is a topological mixing (see
also [6]). This special representation enables us to consider for T* the invariant
Gibbs measures constructed by Sinai in [ 15]. With these measures, T* is a K-flow.
Among such measures, in particular, we find the so-called smooth invariant
measures which induce on the elements of a measurable contracting or expanding
partition a conditional measure equivalent to Riemannian volume. These mea-
sures were constructed for C-diffeomorphisms in [13] and for three-dimensional
C-flows in [11]. In the case of a geodesic flow on a manifold of negative curva-

ture, these measures coincide with invariant Riemannian volume.

1. Notation and definitions

Let W" be an n-dimensional compact Riemannian manifold of class C*, {T'}
a C-flow on W*, T'(T,) its k-dimensional contracting (I-dimensional expanding)
foliation, k+1+1 =n, G(G,) the (k+ 1)-dimensional ((I + 1)-dimensional)
foliation into leaves: G, = U® _ TT. (G, = UZ_,T'T,). It is assumed
that all leaves of the foliations I', and TI', are dense in W*.

T’(x) will denote the closed &-ball in I'(x) centered at x. According to [2],
d(T'y, T'z) < cl'd (y,z) for y,ze T (x)
d(T "'y, T™'z) < cAtd (y,z) for y,zeT(x)

where ¢ >0, d,, d, denote the Riemann metrics on I',, I',, 0 <A <1,

It is shown in [16] that there exist ¢ >0, y>0 such that for all x,
weTl(x), ve Gi(x), the g-balls I'?°(v) and G;°(w) intersect in exactly one point
[v,w] and the mapping (v,w) — [v,w] of the direct product I')(x) x GX(x) onto
a neighborhood of the point x in W" is a homeomorphism. The mapping
n. 2z > [2,y], 2ze G(x), yeT'(x), is a homeomorphism of G(x) onto a neigh-
borhood of y in the leaf G(y). We call the mapping =, the c-isomorphism. The
set A’ = [A,y] of all points [z,y], ze A, is said to be c-isomorphic to 4. Simi-
larly, the mapping =,: y — [z,y] is called the e-isomorphism.

The notation A <T',, I',, G,, G, will mean that A is a subset of a leaf of the
foliation in question.

A subset 4 of aleaf is said to be admissible if in the metric of the leaf (1) IntA4 # (7.
IntA = A; (2) the measure of the boundary 94 is zero.

Let 4, and A, be admissible subsets of a leaf G,(x).
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DerNITION 1.1, A and A, are said to be trajectory isomorphic if one can
define on A, a continuous function g(x), x€ A, satisfying the following con-
ditions:

(1) q(4;N42) =0;
@ U T x = 4,;

xe Ay

(3) the mapping ¥: x » T®x is a homeomorphism.

Let 4 = I'(x,) be an admissible subset of the leaf I',(x,) and B its c-isomorphic
image on G,(x;). For C-flows, the foliations T, and I', generally form a non-
integrable pair (see [2]), and therefore the set B is not a subset of a leaf of T,.
However, it can be shown that for every point z € B there is a subset B’ of I'(z)
which contains z and is trajectory isomorphic to B. If the C-flow is also of class
C?, then the foliations I',, T,, G,, G, satisfy a Holder condition of positive order
(see [3], [8]) and have the absolute continuity property ([2], [4]), so that in this
case the subset B’ is admissible in I'(z) and the function g(y), y € B’, effecting
the trajectory isomorphism between B and B’, sat sfies a Holder condition of pos-

itive order (see Section 3). In accordance with Definition 1.1 we introduce the
notation B' = . 'B.
We now consider admissible subsets C < T'}(x) and D = T'%(x).

DErFINITION 1.2. The set P = [C,D] is called a c-parallelogram in W" if
[y,z]leP for all ye C, ze D. The diameters of the sets C and D are called the
sizes of P.

Any c-parallelogram is the union of ¢-isomorphic sets {[C,z] = C(z), ze D}
on the one hand, and of e-isomorphic sets {[ y, D] = D(y), ye C}, on the other;
these sets are subsets of leaves of I'.. We denote d.P = U, ,c [y,D],
.P=U,.p[C,z], 0P = 3.PUP. For xe[C,z], xe[y,D], we denote
[C,z] = C(x), [y, D] = D(x). It will be convenient to write P = [C, D], where
C = C(x), D = D(x) for some xeP.

Let P = [Cp,Dp] and Q = [Cy,Dy] be two c-parallelograms, PN Q #
and xePn Q. Let Dpy(x) = Dp(x) N\ Dy(x) =T (x) and Cpy(x) = ¥5  Cp(x)
NY;'Co(x) =T(x). The notation PN Q # & will always mean that
IntDpy(x) # & in T(x) and IntCpy(x) # & in I (x). Let C¥(x) denote the
¥-image of Cpg(x) on C,(x) and Cy(x) the ¥, -image of Cpg(x) on Cy(x). The
parallelogram P, = [Cg(x),DPQ(x)] cP(Qp = [Cg(x),DPQ(x)] < Q) will be call-
ed the projection of @ on P (of P on Q). Two parallelograms P, and P, are said
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to be parallel if there exists a continuous function 7(x) on P, such that
U sep, T"®x = P,. The projections Py and Qp are obviously parallel.

Given a parallelogram P = [Cp,Dp] > Cp, we define a continuous positive
function 7(x) on Cp.

DerINITION 1.3. Any set V of the form V= U, . U@ T'Dy(x) is called
a c-parallelepiped in W"; P will be called the lower face of V.

DerINITION 1.4, A finite system of c-parallelepipeds {V;, i = 1,---,k} in W*
will be called a partition if W= U[_ ¥, and V,nV; = dV,n dV;, i #j.

Henceforth we shall speak simply of parallelograms instead of c-parallelo-
grams; the entire discussion can be carried out in symmetric fashion for e-paral-
lelograms.

Let U be a system of parallelograms. We shall say that 9 is complete if for
every point we W" there exists an interval on the trajectory of w whose endpoints
lie in elements of A. Let A = {P;, i = 1,---,k}, P, =[C;,D;], P, P; = &,
i # j, be a finite complete system of parallelograms, and let M = My be the
set-theoretic union of the parallelograms {P;} with the induced topology. Let
I(x), xe M, denote the length of the interval on the trajectory of the flow {7}
extending from x in the positive direction to its first intersection x’ with M.
It is obvious that 0 < I, < I(x) < 0. We denote by f,,= fy the one-to-one mapping
of M onto itself defined by x — x’. Following Bowen, we define

DEFINITION 1.5. A system U is said to be Markovian for the C-flow {T'} if,
whenever xelntP, f~'(IntP s

(1.2) SInt Dy(x)) = D(f(x))

1.3) S(Cy(%)) o Int C,(f(x)).
DerINITION 1.6. A partition y into c-parallelepipeds {V}} is called a Markov
partition for {T’} if the system B(u) of lower faces of the parallelepipeds {V;}

is Markovian.
It follows from Definition 1.3 that the function Iy is continuous on the open

parallelograms P = [Cp,Dp]eB and constant on [z,Dp], ze Cp. Consider
0B =Up.50.P, 0.8 =Up. 40P, 08=0BU3B.

ProrosiTIoN 1.1. If xed,B, yed, B, then f(x)edB and f " 'yecdB.

ProoF. Let yed,P and z=f"'yeIntQ, P, QeB. Let O(z) be a neigh-
borhood of z in IntDy(z). Since ly(z) is constant on IntDy(z), it follow that
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f(0.(z)) is a neighborhood of y in I' (y). Let ue0.(z) such that f(u)eIntP.
By the Markov property, f(IntDy(u)) < Dp(f(u)), and consequently
J(0(2)) = Dp(f(w)), ie., yelntDp(f(u)), which contradicts the assumption
yed,P. Therefore ze dQ. The proof that f(x)e 0B is analogous.

Now let M = My and M = M\U . _, T0B.

PROPOSITION 1.2. Let woe M be a periodic point of the C-flow {T'}. Then
either wye 0B or woe M.

PROOF. Since w, is periodic, there exists k > 0 such that f(w,) = w,. Suppose
that wy ¢ M. Then there exists m, 0 < m <k, such that f™ woe0B.

If f™w,e0,B, it follows from the foregoing that wy = f* "(f™w,)e 0B
(k — m > 0), while if f™w,€0,B then wy, = f~"(f"w,) € 0B . Consequently, if
wo & M then wye0B.

2. Construction of Markov partition
In this section we prove the following

THEOREM 2.1. For every ¢ >0, the C-flow {T'} has a Markov partition p
into c-parallelepipeds {V,}, the sizes of whose lower faces are at most &, such
that the function ly,, satisfies a Holder condition of positive order on every
continuity component.

The validity of the Hélder condition will be proved in Section 3; the present
section is devoted to construction of the Markov partition.

Let A° = {A?, ,A}} be a complete finite system of parallelograms,
A} =[C),DY], C) =T4x), DY =Tix), AAnA) =& for i#j, O<a<
min(e, 7). For x e D?, we consider y; 1C2(x) and the function ¢,(z), ze ¥ ' C{(x),
defining the trajectory isomorphism between C?(x) and ¥, 'C2(x). We set:

q= max min0 max |qx(z)|, M = My°
=1,k xeDi zev % Ci(X)

min ly(x) = L< oo, min l[(x)=1>0
xeM xeM

L<t<L+l, VP= UT4)

t=0
T—tAiO = Ai(t) = [Ci?,Dg]-

Suppose that the sets {Int Vio, i =1,--,k} cover W". Let a be so small that
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2g < 1 and there exists @ < < min (¢,9,&,) such that the diameters of the
sets {T7'DY(y), yeTidx), te[~2q,7+2q]} and {T7'Y;'Cl(z), zeTx),
te[—2q,7 + 2q]} are at most 6/2.

As mentioned in the introduction, we shall state here several lemmas whose
full proofs are given in [5]. These lemmas illustrate the successive approximation
of the leaves {C{} and {D?} to the Markov property. The procedure (Lemmas
2.1 and 22) consists in applying to D,° a sufficiently strong expansion
T "D? (where m is large), adding to the leaf T ~"D_ sets D)(z) = [z,D}],
te[0,7], ze C{, which cut the boundary 6T ™D, at a certain point z in such
a way that T™"CY(T™z) c Ci(z) and T "CX(T™z) remains at a certain fixed
distance from the boundary of C;(z). However, the relation T™"CJ(T™z) = C2(2)
is not rigorously correct, since in general, neither T~ "Cg(T™z) nor C2(z) is a
subset of a leaf of I',; we therefore project them by a trajectory isomorphism
onto I',(z) and write Y, ' T™"C(T™z) = y; ' C2(z). The set obtained after adding
the sets DY(z) is contracted by applying T™ and we obtain the first approximation
D;. The procedure is then repeated for {D;} and D)(z), and so on (Lemma 2.3).
In the limit we obtain sets {D;} such that the Markov property holds for all
yeldx): T""[y,D:] = [T ™y,D;(T"y)] for some j and t [0, 7] (Lemma 2.4).
The sets D; have the property D; = IntD;. In Section 3 we shall prove that for
a C-flow of class C? the measure of the boundary 0D, is zero and consequently
the D; are admissible sets. An analogous construction is applied to C?, the only
difference being that the sets [Cy, z] which we must add to T™C? are not subsets
of the leaves of I', and therefore we add certain trajectory-isomorphic images on
r(T"C?) (Lemmas 2.2', 2.3’, 2.4"). This introduces a correction g in considera-
tion of the interval [ —g,7 + q], since under a trajectory projection, every point
is translated along its orbit by at most g. The limit set C; does not leave the
-neighborhood I'’(x;) and therefore the Markov property remains valid for D;.
Considering now the parallelograms A; = [C;,D,], we see that both Markov
propert.es hold for ye4;:

T—m[y’ Dl] = [T_m)’, Djt,]
and

Tml//; I[Chy] > 'PT_"}y[thp Tm.V]
for some t,,t,e[—g,7+ q] (Lemma 2.5).

The parallelograms {T~‘A;,te[0,7], i = 1,---,k} cover W". We then con-
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struct a new cover v by parallelograms, decomposing each T~ 4; in such a way
that, if two of the new parallelograms P, Qe v intersect, IntP~IntQ # ¢J,
then they are parallel (see Sec. 1) (relations (2.1), (2.1'), Lemmas 2.6 and 2.7).

Every element B of the new partition v on {4;} is again decomposed, project-
ing onto B all parallelograms Q € v which intersect with the translates 7-'B on
the entire interval ¢ € [0, m] (this decomposition is denoted by a(B)). The Markov
property of the parallelograms {A4;} for t = m guarantees the Markov property
of this last partition (Lemma 2.8).

LemMa 2.1. There exist a >0 and a mapping F:
W JxI,x— (0, ie{l,2,--,k} = J; te[0,7] =1

such that xeAg(x), I'i(2) < D,?(x)(z) forall ze CFO(_‘)(x), and §,; lC,?(,C)(y) o> TYy)
for all yeDR(x).

Now choose m so large that c E;Ll,l""' <afy and set g = T™™, B = A™.

LeMMA 2.2. Leti=1,--,k. We can find points {y;;, j = 1,+-,s,} in T(x))
such that for z;; = g(¥;;):

a) gd) N Dg(z”) (zi) # D,

b) 90) = U Digy, (@)

15jss
Next set D'= U léjésig—lD}('z}j)(zij).
LEMMA 2.3. For n =1 and yeT(x), [y,D!] has dense interior in T(y)

and

[y, D] c T+ +E02(y) = TY(y).

Denote D; = U, ¢Dj =T2x), D; = IntD; in [e(x).
LemMAa 24. If ze[T'%x,),D.], then, for some j(z)eJ, t(z)e[—q,7 + q] and
Clioyiy Dicyey] containing g(z):
o[2:D:] > [(2) Dy
and
J(2) = j([x:,z])).

! and C? we have:

Similarly, working with g~
LemMMA 2.2°. There are points u;,, r=1,--,p, in T¥x,) such that for

Wi = g_l(wir):
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a) g7 (CN VarCrowm W) # &,

b) g () e U Yo Cru ).

12rgp

We set Ci1 = U gl//;,,lc.?(w.-r)(wir ’

1srspi

c = U gy icitm).

12rsp;

LeMMA 2.3'. For n =1 and zeT¥x), ¥, '[C},z] has dense interior in
Tz) and Y7 '[C},z] e TP (7) < TYz).

Denote C; = U ,50Cf =TXx), C; = IntC; in T¥x).

LemvMa 24" If we[C,TAx)], then, for some r(w)eJ, tw)e[—q,7 + q]
and [Coiuyeonys Doowyeowr] containing g *:

g 1*//; l[Cn w]o ‘I’g—-ll w[cr(w)r(w))a g 1W] .

We now set 4; = [Cy, D], i = 1,-,k, 4, = IntA;,, 4, = T 4,
Ki-gctq) = {Ai» t€[—q, 7+ q], i = 1,--,k}. Consider the system of parallelo-
grams A = {4;, i =1,---,k}.

Lemmas 2.4 and 2.4’ combine to give:

LemmA 2.5. If ye A;, then, for some E = Aj, €K;_,.+,; containing g(y),
a[y.D:1= [9(»).D;,,], and for some A, €Ki, .., containing g~'y, g1
¥y '[Cuy] 2 ¥, Crrrg T ).

Let Vi = U /L%, T7" 4;. For Peki_z4,.+2q, denote K, = {i:¥;n P # }.
Take i€ K,,xe V; N P and 4, containing x for some t. Consider the projections
P, = [Cp,,Dp,] < P of the parallelograms 4;, on the parallelogram P. Denote
R = {jeKp: P,NP, % &} Let

z,=P\ U ( U Dy U cp<y>).

ieKp \xedCp( yedDp,
For yeZp, set R(y) = U ., R; and consider:
@1 S((») = {jeR): [y,Dp ]2}
H(y) = {jeRY):[».Dp 13y}
D)= n Itfy,Dp]/ U [y,Dp].
jr He()

JjeSec(y)

Similarly,
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219 S.y) = {jeR(): [Cp,,¥]2 ¥}
H(y) = {jeRW»):[Cp,,y13 ¥}
C(y) = U Int[CP,, y] \ U [ij, y] .

jeSe(y) JjeHe(y)
Set B(y) = [C(»),D(y)]. Repeating the reasoning of [S, Lemmas 20, 21] we
can prove:

Lemma 2.6. If y,zeZ, and B(y) N\ B(z) # &, then B(y) = B(z).

Lemma 2.7. The family v, = {—B(Z),zeZP} is a finite partition of P into
parallelograms.

Construct the partition vp for all Pex;_;,,.124) and denote:

m+2q
v=1{Qevp, Peri_sgcraqt> Z=W"\U U T7' Q.
Qev t=0

Take A;e A, Bevy,, B,=T-'B, ze B,n Z and set:
K(z) = {P3z: PEki_ g eeq))
k(B)={Pek(z), ze B,Nz}
V(B:) = {BtQ: Qevp, PEK(B:)}
J(z)= U BQ

BtQ 3z

where B,Q is the projection of Q on B,.
By the construction of vp, the family

«(B,) = {J(2), ze B,NZ}

is a finite partition of B, into parallelograms. Consider the product of partitions:

a(B) = :\'/"0 T'«(B,).
For ye BN Z, set
vi(y) = {Q,:B,Q,5T""y, B,Q,ev(B))}
v(y) = {Q.ev(y): 0 <t < m}.

The partition a(B) coincides with the partition:

{Nn T"BL)= N B(TQ);yeBUZ}.
Qeev(y) Qe v(y)

Consider the system of parallelograms It = {Pe«(B), Bev,,, i = 1,---,k},
fsm =f.
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LemmA 2.8. The system MM is Markovian for the flow {T'}.

ProoF. Let xeIntP, N f~Y(IntP))NZ, P;, P;eM, ly(x) = s(s = 2q). Set
P; = P(x) = [Cp(x), Dp(x)], f(x) = y, P; = P(f(x)) = P(y) = [Cp(y), Dp(y)]
and assume that P(x)e a(B(x), (P(y)e a(B(y)), B(X)evy,, B(y)evy,, As, A, € A i

By the definition of P(x) and P(y);

Dp(x) = 0. )T'DQt(T-'x)

De(y) = N T'Do T 'y) =
Qeev(y)

2.3) = Dypy() N n T'ne, T7'7)-

ITORED)
We shall prove that in (2.3):

Dp(y) = N T'De(T ).

(2.4) [Qce () 125

To this end it is sufficient to prove that
Dpi(») = N T Do (T~'y).
{Qeev(y)tzs}

Return to the expression for Int B(y), B(y)ev,, as given by (2.1) and (2.1").
Let ne R(y) and let P, be the projection of 4,, = T—*4,, A, = [C,,D,] on 4,.
Then, for some t—q < t(y) < t + q, we have TPy e[I'%x,),D,]. By Lemma
2.5, there exists E(y,n)€kj_,, .+, containing T "(T**’y) such that
T[Ty, D,] 2 [T™™" y,Dgym]-

Denoting T*O[T'®y,D,] = [y, Dyyyy], We get:

(2.6) [V Dusisy] > T " O[T Py, Diyum] -

2.5)

Since E(y,n) €K, ¢+49, there exists Q_, . ) € Vgy.m Such that
[y, Dm(y)] = Tm_'(y)DQ_m“(y)(T_er'(y),V) .

The inclusion (2.5) now follows from the fact that (2.6) is true for all ne R(y)
and m — t(y) > s. This proves (2.3).
We rewrite (2.3) as:

Dp(y) = N THSDQ,(T_rx) =

{Qrev(x),0=t=m—s}

=T N T'Do(T™"%).

{Qte v(x),05tSm—s}
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From (2.2) and (2.7) it follows that
(2.8) T*Dp(x) = Dp(y).

This proves the Markov condition (1.2). The Markov condition (1.3) can be
proved similarly. O

Let Mt be a Markovian system; set Py(x) = P N f~!Q for xe PePland
fxeQeMM. Then the system B = {Py(x), xe M} is also Markovian, and Iy(x)
is continuous on the open parallelograms of this syetm. Therefore, the closure
V() of U, cimpgeey U 2% T'y is a c-parallelepiped, and p = {V(x),x € M} is
a Markov partition, as required in Theorem 2.1.

REMARK. We can choose the initial system %° in such a way that for some
periodic point w, € Int P, P Uy, we have fy,wy, = w, . Then, if the m in Lemma
2.1 is sufficiently large, it is c'ear from the construction that this property remains

valid for the Markovian system B. It is obvious that then w, EM% (see Propo-
sition 1.2).

3. Estimation of the measure of the boundary: Hélder condition

We now assume that the flow {T"} is of class C2. We shall prove, as in [14]
for the case of C-diffeomorphisms, that the sets 4; = [C;,D;] obtained by the
above limit procedure are indeed parallelograms in accordance with Definition
1.2. This definition requires that the sets C, and D; be admissible on the leaves
I',(x;) and T (x;), respectively. We shall prove that the boundaries 0C; and dD;
have Lebesgue measure zero on I',(x;) and I'/(x;). Then, obviously, the sets
C(y) and D(y) in (2.1'), obtained from {C;} and {D;} by finite operations of
intersection and complementation, will also possess this property. The same
holds for the sets {Cp}, {Dp} for all P in the Markovian system B(x).

In this section we shall also prove that the function Iy, satisfies a Holder

condition on every continuity component.
We first indicate a few auxiliary facts concerning the properties of C-flows

of class C? (see [2], [4]). Let A%(y) denote the Jacobian of the transformation
taking Riemannian volume S, on I'(y) into Riemannian volume on I'(T ).
Since W" is compact, there exists a constant K, > 0 such that for all ye W” and
te[0,1]

K, = Ayy) £ 1.

Since the flow is of class C2, A'(y) satisfies a Lipschitz condition on I'\(y),
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with a constant independent of y. Therefore, for all te[0,1], y;,y,€T(y),

and a constant K, >0,

| AL
AY(y2)

Now let D =T, diam,D < oo, and let {t,} be an increasing sequence of

positive numbers tending to o0, t, =0, t;~t,_; £ 1. For y,,y, €D, consider
the quotient

(3.1) -1 I < Kod(y1,¥2).

A (A7~ (T yy), - AT~ (T yy)
KA (T ), e, Ap=in=(THry;)
Since d(T*y,, T"'y,) < cdiam,D-A", it follows from (3.1) that

J ATy _
KT y,)

A(y1,y,) =

1] < K,dima,D- A"

where K; = cK,.
Therefore,

A;(diamD) = [] (1 — K3+ 4"diam.D) < Al(y1,y2) =
(3.2) U=1

< [I A + K;-A¥diam D) = A] (diam.D).
ji=1

Since {t,} increases as k — oo, the product in (3.2) is convergent.

Similarly, let AX(z) be the Jacobian of the transformation at z taking Rie-
mannian volume on I'y(z) into Riemannian volume on T'(T~%) and C =T,
diam,C < w0 and z,,z,eC. Then

AZ(diam,C) = T] (1 — K, "’ diam,C) < A'(z,,2;) <
i=1

< J] ( + K,-2diam,C) = A; (diam, C)
i=2

where K, > 0 is a constant.
Now, for admissible sets A,D < I'’(x), consider

SAT) [ M) BT e AT S
_ J4

S(T™D) fDA‘c’(x)A'c’"‘(T"x) e APPTEHT X)dS ()



104 M. RATNER Israel J. Math.,
It follows from (3.2) that for any ¢,
AZ(y) . S.A S{T"4) _ Ay sA
sy 5P samy - nw SP
Since A (y) and AJ(p) tend to unity as y — 0, we have

S(T'4) S.A | S.A
' saD) ~sDb | W5

IA

where ¢ (y) >0 as y -0, t>0,
Similarly, for admissible B, C =« T(x),

S(T™'B) S.B S,B
S(T-C) _ 5.C ’ < ¢ 3¢

where lim, ., ¢.(y) =0, t> 0.

Consider on TI'’(x) the m,-isomorphism I'’(x) - [y,T'(x)] (for the notation,
see Section 1), n(x) = y e G)(x). Besides the measure S, on I'}(x), we consider
the measure §C obtained by transferring Riemannian volume on T[I(y) to I'(x)
by the transformation 7, *. Since the foliation G, is absolutely continuous, the
measures S, and S, are equivalent. Let I(x) be the density of S, relative to S,
at the point x. The function I(x) is continuous, and for every ¢ > O there exists
d; = J,(¢), independent of x, such that for any two measurable sets D, 4, = TX(x)

Sc(Dx)>Os Dy = [y’Dx]’ Ay = [y’Ax]9 if de(x’y)<51 then

< 2¢

ScA,  SA, | . SA
S.D,” S.D, l S5.D,’

Similarly, for measurable sets B,, C,<Tl(u), S(C,)>0, B,=[B,v],
CV:[Cu’ U], dc(u’ D) < 523

‘ SB._SBy | _ . SBa
5.C,” 5., | S.C.’

In addition, for any 0 < &< 1 there exist § = 8(8) <y and 7 = #(§)> 0 such
that for all x,y with d (x,y) <& and u,v with d (u,v) <§, te[0,f]:

l S(T™'4,)  S.A, I 5 Sehs
(3.4) S{T-D,) 5.0, | ~°3.D,
S.T-'B, _ 5B, | _ SeBa
ST, ~ S.C, S.C,
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We now return to the system of parallelograms A = A4,°= [C° D?],
i =1,.--,k}, with which we began the successive approximation procedure. We
choose C? = T%(x;), D} = T?(x;) so that max,,,, ly,(x) = L <4 (for the nota-
tion, see Section 2). Set:

k%= (A A% = T™'AL, 1e[0,2L] i=1,--k)
k0 = {D3: DY(y) = T™'[y,D{], yeC?, te[0,2L], i = 1,---,k}
k0= {C: Civ) = T~ Y, '[C),v], veD’, te[0,2L], i = 1,---,k}.

We choose « so that the diameters of the sets x° and x? are at most §/2. For
the successive approximations D}, C}, we set:

K2 = {D: Di(y) = T '[y,D}], yeC?, te[0,2L], i = 1,---,k}
k! = {Ch:Ch(v) = T, '[Cr,v], veD?, te[0,2L], i = 1,---,k}.

For every n = 0,1, .-, the sets of the systems «} and x} cover each complete
leaf of T, and T,, respectively. Moreover, by construction, T~ "D} (where m is
large) consists of sets of the system x°, T~"D? of sets of «,,---, T ™D} of sets
k2~ '. Therefore T ™ D} consists of sets of the system x_. Moreover, the
boundary of the set T ™"~ VD/is distant at most y-c+ A™ from the boundary of
T~""Dpr~! Our aim is to prove that the boundary of the limit set D,
has measure zero. To this end, we construct a decreasing sequence of sets
W, > W,> -+ such that [ W, > 8D; and S(W,) < pS.(W,_,) for some p < 1.

To do this, it will be convenient to have on each complete leaf not a cover
but a partition into admissible sets such that the measure of a small neighborhood
of their boundaries is uniformly small. For each parallelogram P = x°, we con-
struct a partition v3 (see (2.1), (2.1)) as in Lemmas 2.6 and 2.7, and set
v ={Q = [Cp,Dy]: Q =v3,P = x°}. We choose the initial cover % ° that for
every Q < v° the sets D, and C, are connected and admissible. By the construc-
tion of the system v,, there exist finitely many parallelograms Q;ev® and
t;e[0,2L], i = 1,--,1, such that v0 = {T ~'Q;:te[0,t], i = 1,---,1}. The sets
of the systems

V? = {DtQi(y) = T—t[y’DQg]’ yECQ,-’ tE[O,ti], i= 1),1}

and
v = {ChH(0) = T, '[Cy,,v], vEDy, te[0,1,], i = 1,1}

form a partition of every complete leaf on I', and I',, respectively. The sets
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Dev?and Cev) are admissible and have diameter at most §/2 <y/2. For
A =T (x), let U(A) denote the r-neighborhood of the boundary 64 on the
leaf I' (x). Similarly, we define U/(B) for Bc I' (x).

LemMMA 3.1.  There exist 0<r, s<§/2 and 0<p,,p, <% such that for

all DeV?, Cev?.

S.UD)
TS0 <p
3.5)
S.U(C)
T < p2 .
Proor. Choose r;, 0 <r,<&/2, so that

<§l_]'£2‘,<1 i=1,2.

0<%, “1

Then, by (3.4),
0< ScT_t[y’ UnDQa] < }_

(3.6) 5
SCDtQ((y)
for all te[0,1], ye Cp,. It is obvious that
r = min d(0T™'[y,U,Dg,1.0D(»)) > 0.

te[0.t;1,ye CQ,
Therefore, for 0 <r <min r; we have U/(Dp(»)) = T '[y,U,(Dy)]. It then
follows from (3.6) that for all Dev?

S.UD) _ 1

0<=5p <7

This proves the first inequality of (3.5). The proof of the second is analogous.
We now choose the number m figuring in our procedure to be so large that
3.y ¢+ A" <min(r,s). Then:

THEOREM 3.2. The limit sets D; and C; are admissible,

Proor. We must show that S (dD;) = 0 and S, 0C;) = 0. Consider the nth
approximation D]. The set T~ "D} lies in the leaf I',(T~™x;) and is the union
of sets in v). We set

«, = {D:DeV?, d(8D,0T ™D}) £ 7}
and W, = U, D. The boundary d(T"W,) is contained in the 2:y-cA™neigh-
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borhood of the boundary of T~ ™"~ YD"~! while the boundary &(T """V DY)
is by construction in a ¢y A™neighborhood of T~ ™"~1p}~ ! Therefore T"W,
lies in the 3-y-c-A™neighborhood of aT ™" YD,/ ~! and a fortiori (since
3.y:¢- A" <r) in its r-neighborhood. Therefore T"W,< U pea,.,U{D) and
T"W, cW,_,. Setting W, = T"W,, we have W, < W,_, < ---. We claim that
S{W,) < pS(W,-1), where p <1.

1t follows from Lemma 3.1 that for D<W,, DA T"W,., # &

SDN T"W,4 1) < su,p)y 1
S.D =—%35p <7

We have W, = U ,., T™D and W,,, = U p.,, T™U,D). Consider the quo-
tient S,(T™U,D))/S.(T™D).

It follows from (3.3) that if y is so small that ¢(y) <1, then

SAT™UD)) _,S.ULD)
S.T™D S.D

<2p<1.

Finally,

S(Woe) Z S(T™U(D))

< Dean <25p= =1,
Sy = 3.8y PP

Since M, W, o D, it follows that S(dD;) = 0. One proves in a similar fashion
that S,(0C)) = 0. O

We shall now prove that the function Iy = of the Markovian system
B ={P,=[C,D], i=1,-,k}, C;cT,, D, cT,, satisfies a Holder condi-
tion on the open parallelograms {P;}. Note that the sets C;, D; are in general
not in P;, and [C;,z] is c-isomorphic to C; for any ze D;. The function [ is
constant on the sets [u,D;], and therefore the set of its values on IntP; is the
same as the set of its values on any Int[C;,z]. We fix C; = [C;,z] and consider
on C; the metric of the leaf G,.

THEOREM 3.1. The function | satisfies a Holder condition on IntC;.

Proor. Let E; = {ycInt C;: f(y) = P,} We shall prove that the Holder
condition is satisfied on each E,. Let n;: C; = C; be the c-isomorphism. For
xeC;, we set p(x) equal to the unique point in the intersection G (x)n C;
nearest to x in G/(x) (recall that the sizes of the parallelograms P, and their
mutual distances are sufficiently small). Let 7% C, > Ci(f(»)) be the c-isomor-
phism. Then f(y) = n*p n(y). The foliations G, and T, satisfy a Holder con-
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dition; this is proved in [3]. The analogous assertion for C-diffeomorphisms
was also proved in [8] and the proof carries over easily to flows. Hence each
of the mappings 7!, p and r* satisfies a Holder condition, and the same there-
fore holds for f on E;;. Now let D be a differentiable disk containing E; and
transversal to the flow. Then ®(y,?) = T’y is a diffeomorphism of D x [ —7,7]
into W". Since f(y) = T'™y for y € E,, it follows that I(y) satisfies a Lipschitz
condition in f and consequently a Holder condition in y. Q.E.D.

ReMARK. Let xeInt’;, and consider ¢ !C; cT(x). Let ¢(z), zey ',
be a function defining a trajectory isomorphism ¥, ie., Y(z) = T*®ze (..
For ueC;, we define S(u) = G,(u) Uy, 'C,—the point nearest to u. Then
Y, = (n})"'S™!. The mappings S™! and (z)~! satisfy a Hslder condition, so
that the same is true of y, on Y, 'C; =T, in the metric of I',. Therefore, as
before, g(z) satisfies a Holder condition on . 'C;. In the sequel we shall some-
times consider the metric on ;, carried over by ¥, from y [ 'C,. It is clear

that the function I will then satisfy a Holder condition in this metric as well.

4. Symbolic dynamics

As before, let M be the set-theoretic union of the parallelograms
{P,=[C,D], C;,D;<P;, i =1,---,k} of a Markovian system B, considered
in the natural topology, f = f:M —» M defined by f(x) = T'x, 0 << I(x)
<L<o. We consider on M a pair of partitions & = {D.:[y,D;}, yeC;
i=1,,k}and & = {C,:[C,,v], veD,.i =1,---,k}. We denote E = E, UVE,,
where

E.=U UrT%P E=U U T%,°P,

PeB t=- PeB t=—~o0

M, =MnNE,M=M\M,. M, and M are dense in M and invariant under f,
and moreover f is continuous on M. We consider on M partitions £, = {D,:
D.nM} and & = {C,: C,n M}. Since B is a Markovian system, we have

SDx) = D(f"x)

FTCLx) = C(f"x).
For n = 0, we set Zi(x) = f"D(f"x), Ei(x) = f"C(f"x). It is clear that
Frcfrttand £ < £ Let X¥(x) and X(x) be the closures in M of sets £%(x)
and £¥(x). We define the complete contractible leaf at x in A to be £.(x) =

©_o 2o(x). Similarly, we define £,(x) in M, and X.(x), X (x)—the complete
leaves at x in M. The mapping f l M takes leaves into leaves,
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On the elements D, = I", we shall consider the Riemannian metric d, and
Riemannian volume S, induced by imbedding in I',. Let C, = [C;,v], veD;,
x,yeC, and x; = ¥, 'x, y; = ¥, 'y. Since ¥ satisfies a Holder condition of
some order «, it follows that d(x,y) £ A[d(x,,y,)]", where A > 0 is a constant,
d, the metric in G, > C, and d, the metric in I'(v) with 4 and « the same for all
C,e&,. In the sequel it will be convenient to consider the metric and Riemannian
volume on C, carried over from ¥ 'C, by ,. This will enable us to make
use of the convenient relation (4.1) for f~*, a contraction on C, analogous to
the contraction in the case of C-diffeomorphisms, without the exponent of the
power on d,(x,y). In this new metric, d (x,y) stands for d(x,,y,). As before,
let ¢ = max,,,|q.(y)|, where g.(y) is defined by T*Yy = 'y for x,yeC,,
2g <1 and A = A~%¢. Then:

df"x,f"y) £ cA"d(x,y) if x, yelntD,
@0 4" f ) < hd(x,y) if x,yelntC,
Consider the partitions § = {PeB} on M and § = {PN M, PeB} on M.

We introduce symbolic dynamics for f (see [ 5], [7]).

For P,Qef, we define
1, if f(ItP)nIntQ # &,
«(P,Q) = { f(IntP) Q0+
0 otherwise .

Let p% be the set of all bilaterally infinite sequences (P)_. and

Q(p) = * the set of all such sequences for which a(P;,P;,;) = 1. We define
a metric in pZ by setting d(P,Q) = X;.,27p(P;,Q,), where

0, if Pith
1, if P, #0,.

Then Q is a closed subset of the compact metric space B%. We define the shift
homeomorphism ¢: Q — Q by (6(P)); = P;,_;. We shall show later that ¢ is a

p(P1,0) = {

topological mixing.

LemMa 4.1. There exists 6 >0 such that if diam Cp, diamDp <4 for
Pep, then for any x,ye M there exists m such that f™x and f™y lie in different
parallelograms of .

Proor. For y >0, we have

G(x)> {yeW" d(T%,Ty) <y t=z0}



110 M. RATNER Israel J. Math.,
G(x)o {yeW":d(Tx,T'y) £y tZ0}

where d is the metric in W”. Let y be such that GI(x) NGi(x) = U ,7=_yT'x
forallxe W". Thenforany y¢ U J__, T'x there exists ¢ such that d(T"x, T'y) > v,
since otherwise ye Gl(x)n Gi(x) = U J._, T'x. Now let § and y be so small
that if diamCp, diamDp<d and x,yeP, then d(T'x,T') <7y for all
te[-L,L]((z)<Lyand PN U?
we have f™u and f™v in the same parallelogram for all m, then for all t we have
d(T%, T) <7y, so that ve U, L_, T%, contradicting the choice of § and 7.
This proves the lemma.

-—yT'u = uforallueP. Now, if for u, ve P

Henceforth we shall consider parallelograms of sizes not exceeding 4.

Lemma 4.2. For P = {P)}"._,€Q, the intersection U® f ~IntP, con-
tains a single point.

Proor. We first prove that the intersection (2,f “!IntP; is not empty.
Denote 4, = ("./~IntP;, = N°_, N No = A4,NA,. Since the system of
parallelograms is Markovian, it follows that for any C,(x) < P, the intersection

~1&(x) N P;-, is not empty and £~ C(x) < C,(f~1x). Therefore, for each n
the set A, = P, is not empty and for any x € 4, we have C(x) < A4;. Similarly,
A is not empty for any n and for any x € A, we have D (x) = 4, < P,.

In the parallelogram P,, each element D, intersects each C,, and so
A, NA, = A, # &. We thus obtain a decreasing sequence Ay > A; > - of
compact sets, and s0 (Vus0d, = (°w/'IntP; is not empty.

Note that each 4, is a parallelogram. Now let x,ye () ./~ IntP, and
u,,v,€ M such that u,,v,€A4, and u, » x, v, > y. Then for all —-n Em £n
and all k = n we have f™u, and f™v, in the same parallelogram P, € 8. By Lemma
4.1, it follows that d(T'u,,T'vy) <y for —Ln £t £ Ln and k = n; hence,
since T is continuous, d(T*, T'y) < y for —Ln £t £ Ln. This is true for all n;
hence for all ¢t we have d(T*x,T'y) < y and so x = y. This proves the lemma.

Define a mapping 7: Q —» M by n(P) = NL_, f-IntP;.

THEOREM 4.1. The mapping 7 is continuous and “‘onto”” and fon = no o

ProoF. Let P, be a convergent sequence in Q. This means that for every
large n there exists N such that for all k = N, (P, = (Py); for all i,
—n <ign. Then n(PYe N_, f~Int(Py); = A, for k = N. It is clear from
{4.1) that the sizes of the parallelograms A, tend to zero as # — oo. Therefore
the sequence n(P,) is convergent in M. This proves continuity.
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Now let x e M such that f(x) e P,(x). Then fi(x)eInt P(x) n f~1Int P, ,(x))
and consequently P(x) = {Pi(x)} Q. Since xe N f~'Int P(x), it follows from
Lemma 4.2 that n(P(x)) = x. Thus M < n(Q) and M is dense in M. Since n(Q)
is compact, this implies that #(Q) = M. The relation fo = = no o follows
from the definitions of = and o. O

RemMARK 1. It is evident from the proof that =~ is defined on M.

REMARK 2. Consider on M the partition f~: = = \/ T_of " B. The proof of
Lemma 4.2 shows that \/ ™of"f~ = & (the partition into points on M) and
1B~ >B8", B~=&. (See [12]).

We shall now prove that the transformation f is transitive. Let wye M be a
periodic point of the flow T':f(wg) = wy, T,2 = wy, I, >0 (see the remark
at the end of Section 2). By the Markov property, f~*D(wo) > Int D (w,).
Consider the leaves

Zv9) = Usn,om

Ze(WO) = _&Jofiee(wo)'

LeMMA 4.3. The leaves X (w,) and E,(w,) are dense in M.

ProoF. Note first that if ye M lies on a trajectory T'y,, yo €D, (w,), then
obviously yeZ (wy).

Let O/wo) be the connected component of D(w,) containing wy: O,(w,)
= M) in I'(wp). By the Markov property, fIntO(w,) < O.w,), or
T7% 0 (wy) > O, (w,) and by the expansion property

lim (T7M°0(wo)) = I'\(wo),

k— o0

where k > 0 is an integer. I', = lim(T™"°0 (w,)) is dense in T (w,).

Let xelntP and let O(x) be a neighborhood of x in P. We denote
0°(x) = U_oT'0(x) for small ¢. Since T'(w,) is dense in W", there exists
ze T (wo) such that ze O%(x). Then y = T~ "ze O(x) for some 0 < 7 < ¢. The
neighborhood O,(w,) contains a point y, such that T~¥°y, = z for some k > 0.
The points y, and y lie on the same trajectory, therefore y e i and ye  (w,) .
The proof that Z (w,) is dense is analogous. O

REMARK. It is clear from the proof that Z)(wo) = U 2., f "0 (W) < = (w,)
is dense in M.
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Let ye C,(w,) such that D(y) and D(w,) are e-isomorphic. Since f is conti-
nuous on M, it follows from the Markov property that X7(w,) and f-"D(y)
are e-isomorphic. Moreover,

max dy(z,7(z)) = d(ZE(wo), £ 7" D(y)) <

ze E'Z(w 0)

é Cde(Dc(WO)’ Dc(y)) . Zm .

DEeFINITION. f'is said to be a topological mixing on M if, for any two nonempty
open sets U, U,, there exists ko > 0 such that /U, n U, # & for all k 2 k.

THEOREM 4.2. f is a topological mixing on M.

ProOF. Since £,(w,) and £,(w,) are dense in M, there exist m, n >0, z, e U,
z,€ U, such that z, € £'(w,), z, € Ei(w,). Let r be the distance from z, to
d(C.(z,) N U,) in the metric d,. Let O(z,) be the component of D(z,)N U,
containing z,. Then y = f-"z,e0,(w,) and the intersection V,(y) = O(y)
N f"0z,) is openin O,(y) and contains y (O,(y),0,(w,) are components in
DJy), C.w,), respectively).

Since the leaves of D, are expanded by f~1, there exists ¢ > 0 such that
that 7~ W(y) o Of ~%y). OLf 4 y) is e-isomorphic to O/ w,). For all N,

>V and f0.(f°y) are e-isomorphic, and if N> N,, where ¢iV°d (0.(y),
O, (wo)) <r, then
d(Zd, 70Ty <.
Therefore, for all N > max(m,N,) there exists uVef 'NO"c(f “%y) such that
d(u,z) <r, and so u¥eU,. Since
SO ) < f NV ) o f U0 (2y),
it follows that fN**7""y¥e O (z,) c U,. Now, if ky = N + q + n, then for all
k g kOa
ffUNU, # &,
This completes the proof. []
THEOREM 4.3. The shift homeomorphism ¢ on Q is a topological mixing.

Proor. (See Bowen [5]). Let U, ¥V be nonempty open sets in Q. For some n
there exist (2n + 1)-tuples (F_,,---,F,) and (G_,,--,G,), F;, G;ef, such that
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Us U, ={PeQ: P;=F, |i|sn} = &
VoV, ={PeQ: P, =G, I,I <n}# 3.

Let Uy = Ni=cnf "IntF, =V, = Ni=_, f *IntG,. U, abd V, are open in
M. Asin Lemma 4.2, U, and V, are not empty. z~*(U,) = Uy and z~=1(V,) < V.
By Theorem 4.1,

dUNV>dU, NViod@ UY N7 Wy 2~} U, N V).

By Theorem 4.2, there exists k, > 0 such that f*U, N Vi # & for k = ky, and
then also FUAV £ G. O

We now define a function F on Q by F(w) = I(n(w)). It is clear that F satisfies
a Holder condition on Q. Set

W = {(w,0): weQ, 0 £ t< F(w), (0,F(w)) = (cw,0)}

and consider the natural topology on W induced by the direct product Q x ¢.
We define a flow in W by
(w,u+1), t<Fl@)—u

S, u) = {
(ow,u+t—F() t=Flw)—u

for t <inf o F(w).

For other values of ¢, S* is uniquely determined by the condition that {S’} be a
one-parameter group of transformations. The mapping ¢: W — W defined by
$(w,t) = T'r(w) is continuous. Moreover, as shown above, the set H of all
points w e W at which ¢! is not well defined has Lebesgue measure 0. If u is an
S*invariant measure on W such that u(¢-1H) = 0, we can carry it over to W
by means of ¢, ¢u = v, thus getting an isomorphism of the flows T* in (W,v)
and S*in (W, p). This was the method used by Sinai in [15] to construct Gibbs
measures for C-flows, on the assumption that Markov partitions exist.
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