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ABSTRACT 

In this work we construct a Markov partition for transitive Anosov flows, such 
that the measure of the boundary of  the partition is zero. Symbolic dynamics 
for these flows is also developed. 

In this paper we construct a Markov partition for transitive Anosov flows 

(which we call C-flows) on smooth Riemann manifolds. A partition of this type 

was constructed by Adler and Weiss in [1] for a hyperbolic automorphism of a 

two-dimensional torus. Then Sinai [13], [14] used successive approximations 

to define and construct a Markov partition for arbitrary C-diffeomorphisms. 

Bowen [5] modified Sinai's definition and, using the same method, constructed 

a Markov partition for the Axiom A diffeomorphisms of Smale. In the case 

of C-flows on three-dimensional manifolds, a construction of Markov partitions 

was given in [10]. Bowen then [7] carried over his proof for diffeomorphisms to 

the case of A-flows. In Section 2 we shall briefly describe the successive stages 

of Bowen's construction, omitting the proofs of certain intuitively obvious facts 

which are presented exhaustively in [5]. In Section 3 we shall prove that for 

C-flows of class C 2 the boundary of the elements of the Markov partition has 

Lebesgue measure 0. This was proved for C-diffeomorphisms by Sinai [41]. 

No proof of this fact is given in Bowen's paper. 

In Section 4 we study symbolic dynamics for a C-flow (T t} on W. The Markov 

partition enables us to construct a special flow S t (see [12]) in if" = {(to, t). 

co e f~, 0 < t < F(to)), over the space f~ of sequences of an intrinsic Markov 

cha.in (see [9]) with the natural topology, a shift tr in f~ and a positive function 
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F(to) satisfying a H~51der condition, in such a way that there is a continuous 

mapping ~b: if" ~ W such that Tttk = ~bS f, and a is a topological mixing (see 

also [6]). This special representation enables us to consider for T t the invariant 

Gibbs measures constructed by Sinai in [15]. With these measures, T t is a K-flow. 

Among such measures, in particular, we find the so-called smooth invariant 

measures which induce on the elements of a measurable contracting or expanding 

partition a conditional measure equivalent to Riemannian volume. These mea- 

sures were constructed for C-diffeomorphisms in [13] and for three-dimensional 

C-flows in [11]. In the case of a geodesic flow on a manifold of negative curva- 

ture, these measures coincide with invariant Riemannian volume. 

1. Notation and definitions 

Let W n be an n-dimensional compact Riemannian manifold of class C ~ {T t} 

a C-flow on W n, Fc(F e) its k-dimensional contracting (/-dimensional expanding) 

foliation, k + l + 1 = n ,  Gc(Ge) the (k + 1)-dimensional ((l + 1)-dimensional) 

foliation into leaves: Gc = I,.J~ (Ge [,.j oo t - = t =-  ooT Fe). It is assumed 

that all leaves of the foliations Fc and Fe are dense in W n . 

F~(x) will denote the closed /Lball in Fc(x) centered at x.  According to [2], 

de(Try, Ttz)  < c).tdc(y, z) for y, z ~ F~(x) 

de(T-ty ,  T - t z )  < c)/de(y, z) for y, z E Fe(x) 

where c > 0, de, de denote the Riemann metrics on Fc, Fe, 0 < ). < 1. 

It is shown in [16] that there exist C o > 0 ,  ~ > 0  such that for all x ,  

w e Fc~(X), v ~ G~(x), the %-balls F~~ and G~e~ intersect in exactly one point 

Iv, w] and the mapping (v, w) ~ Iv, w] of the direct product F~(x) x G~(x) onto 

a neighborhood of the point x in W ~ is a homeomorphism. The mapping 

n~: z ~ [z, y] ,  z ~ Ge(x), y ~ F~(x), is a homeomorphism of  G~e(X) onto a neigh- 

borhood of y in the leaf Ge(y). We call the mapping n~ the c-isomorphism. The 

set A' = [A , y ]  of all points [ z , y ] ,  z e A ,  is said to be c-isomorphic to A. Simi- 

larly, the mapping he: y ~ [z ,y]  is called the e-isomorphism. 

The notation A c F~, Fe, G~, Ge will mean that A is a subset of a leaf of the 

foliation in question. 

A subset A of a leaf is said to be admissible if in the metric of the leaf (1) IntA r ~ .  

Int A = A; (2) the measure of the boundary dA is zero. 

Let A~ and A2 be admissible subsets of a leaf G~(x). 
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DErINmON 1.1. As and A2 are said to be trajectory isomorphic if one can 

define on A1 a continuous function q(x), x ~ At,  satisfying the following con- 

ditions: 

(1) q(A t N A2) = 0; 

(2) ~ T q0') x = A 2 ;  
xe.4t  

(3) the mapping ip: x ~ 7-~(X)x is a homeomorphism. 

Let A = Fe(Xo) be an admissible subset of  the leaf Fe(xo) and B its c-isomorphic 

image on Ge(xl). For C-flows, the foliations F c and F~ generally form a non- 

integrable pair (see [2]), and therefore the set B is not a subset of  a leaf of  F , .  

However, it can be shown that for every point z e B there is a subset B' of  F~(z) 

which contains z and is trajectory isomorphic to B. If  the C-flow is also of  class 

C 2 , then the foliations F~, F~, Go, Ge satisfy a H61der condition of positive order 

(see [3], [8]) and have the absolute continuity property ([2], [4]), so that in this 

case the subset B' is admissible in F~(z) and the function q(y), y ~ B', effecting 

the trajectory isomorphism between B and B' ,  sat sties a H61der condition of  pos- 

itive order (see Section 3). In accordance with Definition 1.1 we introduce the 
notation B' = @7 XB. 

We now consider admissible subsets C c F~(x) and D c F~(x). 

DErlNmON 1.2. The set P = [C,D] is called a c-parallelogram in W" if 

[y, z] ~ P for all y e C, z e D. The diameters of  the sets C and D are called the 

sizes of  P .  

Any c-parallelogram is the union of  c-isomorphic sets {[C, z] = C(z), z e D} 

on the one hand, and of e-isomorphic sets {[y, D] = D(y), y ~ C}, on the other; 

these sets are subsets of leaves of  Ft .  We denote OcP = I, J y~e c [y,D], 

d,P= ~JzEODEC, z], ~3P= O,PU~P. For  xe[C,z], xe[y,D], we denote 

[C, z] = C(x), [y, O] = D(x). It will be convenient to write P = [C, D],  where 

C = C(x), D = O(x) for some x e P .  

Let P = [Cp, D1,] and Q = [Ce, DQ] be two c-parallelograms, P r3 Q # 

and x ~ e c3 Q. Let Dee(X) = De(x) C3 De(x) c F~(x) and Cpo(X) = @~ 1 Ce(x) 

t'a@~lCQ(x) cF~(x). The notation P c 3 Q # ~  will always mean that 

IntDee(x) ~ ~ in Fc(x) and Int CpQ(X) # ;~ in F~(x). Let C~e(x) denote the 

@:image of Ceo(X) on Cp(x) and C~(x) the @:image of CpQ(X) on Ce(x). The 

parallelogram Pt2 = [Ce~(x), Dee(X)] c P(Qe = [C~(x), Dee(X)] c Q) will be call- 

ed the projection of Q on P (of P on Q). Two parallelograms P~ and P2 are said 
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to be parallel if there exists a continuous function z(x) on P1 such that 

U xEl"l T~(X)x = P2.  The projections Po and Qp are obviously parallel. 

Given a parallelogram P = [CI,,De] ~ C1,, we define a continuous positive 

function z(x) on Cp. 

DEFINITION 1.3. Any set V of the form V = 1.3 x~c. U ~X~o TtOe(x) is called 

a c-parallelepiped in W"; P will be called the lower face of  V. 

DEFINITION 1.4. A finite system of c-parallelepipeds {Vi, i = 1, ..., k} in W" 

will be called a partition if W " =  U ~=tVi and Virh Vj = ~Vi~ (OVj, i ~ j .  

Henceforth we shall speak simply of  parallelograms instead of  c-parallelo- 

grams; the entire discussion can be carried out in symmetric fashion for e-paral- 

lelograms. 

Let 9~ be a system of parallelograms. We shall say that 9~ is complete if for 

every point w e W" there exists an interval on the trajectory of  w whose endpoints 

lie in elements of 9~. Let 9~ = {P,  i = 1, ..., k}, P~ = [C, Ol], P~ n Pj = ~ ,  

i # j ,  be a finite complete system of parallelograms, and let M = M~ be the 

set-theoretic union of the parallelograms {P~} with the induced topology. Let 

l(x), x ~ M,  denote the length of  the interval on the trajectory of the flow {T t} 

extending from x in the positive direction to its first intersection x' with M.  

It is obvious that 0 < l o < l(x) < oo. We denote by f,, = f n  the one-to-one mapping 

of M onto itself defined by x -~ x ' .  Following Bowen, we define 

DEFINITION 1.5. A system 9.I is said to be Markovian for the C-flow {T'} if, 

whenever x e Int Pi c~ f -  X(Int P j),  

(1.2) f ( In t  D~(x)) c Di(f(x)) 

(1.3) f(Ci(x)) = Int C,(f(x)). 

DEFINITION 1.6. A partition /~ into c-parallelepipeds {V~} is called a Markov 

partition for {T t} if the system ~3(/~) of lower faces of the parallelepipeds {V~} 

is Markovian. 
It follows from Definition 1.3 that the function l~ is continuous on the open 

parallelograms P = [Ce, Dp]e~  and constant on [z, De], z eCl,. Consider 

PROPOSITION 1.1. I f  x ~ 0~3, y ~ 0 ~ ,  then f(x)  ~ O!B and f -  ty ~ 0~ .  

PROOF. Let y ~ O,P and z = f -  1 y ~ Int Q, P, (2 ~ !B. Let O~(z) be a neigh- 

borhood of z in Int Do(z ). Since l~(z) is constant on IntDo(z),  it follow that 
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f(Oc(z)) is a neighborhood of y in Fe(y). Let u eOc(z) such that f ( u ) e l n t P .  

By the Markov property, f ( I n t D q ( u ) ) c  De(f(u)), and consequently 

f(Oc(z)) c Dp(f(u)), i.e., y elntDp(f(u)), which contradicts the assumption 

y e deP. Therefore z e dQ. The proof that f (x)  e dfB is analogous. 

Now let M = M~ and ~ = M / I..J t~176 T'a~3. 

PROPOSITION 1.2. Let w o e M be a periodic point of the C-flow {Tt}. Then 

either Woe ~ or Woe ffl. 

PROOF. Since w o is periodic, there exists k > 0 such thatfk(wo) = Wo. Suppose 

that Wo 6_~r. Then there exists m,  0 < m < k, such that fm  Woe a ~ .  

If  fmwoe9~B, it follows from the foregoing that Wo =fk-m(fmwo)e ~ 

(k - m > 0), while if fmw o e ~e ~ then w o = f-'n(fmwo) e a~3. Consequently, if 

Wo ~ ~r  then w o e ~ .  

2. Construction of Markov partition 

In this section we prove the following 

THEOREM 2.1. For every 8 > 0, the C-flow {T t} has a Markov partition # 

into c-parallelepipeds {Ft}, the sizes of whose lower faces are at most 8, such 

that the function lz(,) satisfies a H61der condition of positive order on every 

continuity component. 

The validity of the H61der condition will be proved in Section 3; the present 

section is devoted to construction of the Markov partition. 

Let 9S[ ~  {a~ ~ be a complete finite system of parallelograms, 

A ~  ~ , D~ C ~  D ~  A ~  ~ = ~  for i # ] ,  0 < a <  

min(8, 7). For x e D o , we consider ~k~- 1 CO(x) and the function qx(z), z ~ ~k~ 1 CO(x), 

defining the trajectory isomorphism between C~ and ~,~lC~ We set: 

q = max min max Iq~(z) l, M = M~I ~ 
0 0 

i=l,...,k x~Di zer  I Ci(x) 

min It(x) = L < oo, min l(x) = l> 0 
xeM x~M 

L < z < L + l ,  Vi~ 6 T-tA ~ 
t = O  

0 0 T-'A? : A, ~ = [C,t,Dit]. 

Suppose that the sets {Int No, i = 1,...,k} cover wn. Let a he so small that 
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2q =< l and there exists ct < 6 < min (e,?,eo) such that the diameters of the 

sets {T-'D~ yeF~e(X,), t e [ - 2 q ,  z+2q]}  and {T-t02~C~ zsF~(x,), 

t e [ - 2 q ,  z +2q]} are at most 6/2. 

As mentioned in the introduction, we shall state here several lemmas whose 

full proofs are given in [5]. These lemmas illustrate the successive approximation 

of the leaves {C ~ and {D ~ to the Markov property. The procedure (Lemmas 

2.1 and 2.2) consists in applying to Dk~ sufficiently strong expansion 
--ra  O T Dk (where m is large), adding to the leaf T-mDk~ sets D~ = [z, D~ 

t e [0,z], z e C ~ which cut the boundary -m o t?T D, at a certain point z in such 

a way that T-'nC~ C~ and T - ' C ~  remains at a certain fixed 

distance from the boundary of C~ However, the relation T-mC~ c C~ 

is not rigorously correct, since in general, neither T-"C~ nor C~ is a 

subset of a leaf of Fe; we therefore project them by a trajectory isomorphism 

onto Fe(z) and write O[1T-'nC~ c 0~'~ C~ The set obtained after adding 

the sets D~ is contracted by applying T m and we obtain the first approximation 

B~. The procedure is then repeated for {D~} and D:,(z), and so on (Lemma 2.3). 

In the limit we obtain sets {D~} such that the Markov property holds for all 

y ~ F~(xi): T-relY, D,] ~ IT-my, Dj,(T-my)] for somej and te  [0,z] (Lemma 2.4). 

The sets D~ have the property D~ = IntD~. In Section 3 we shall prove that for 

a C-flow of class C 1 the measure of the boundary ODi is zero and consequently 

the D~ are admissible sets. An analogous construction is applied to C ~ the only 

difference being that the sets [C ~ z] which we must add to Tmc ~ are not subsets 

of the leaves of Fe and therefore we add certain trajectory-isomorphic images on 

F~(T"C ~ (Lemmas 2.2', 2.3', 2.4'). This introduces a correction q in considera- 

tion of the interval [ -  q, z + q], since under a trajectory projection, every point 

is translated along its orbit by at most q. The limit set C~ does not leave the 

6-neighborhood F~(x~) and therefore the Markov property remains valid for Di. 

Considering now the parallelograms Ai = [C~,D~], we see that both Markov 

propert,es hold for y e Ai: 

T-~[y,D,] = [ r - ' y ,  Djt,] 

and 

- 1  rm0; ' [ c .  y] = r y] 

for some tl, tz E [-q,~ + q] (Lemma 2.5). 

The parallelograms {r-tAi, ts[O,~], i=  1,...,k} cover W n. We then con- 
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struct a new cover v by parallelograms, decomposing each T - t A t  in such a way 

that, if two of the new parallelograms P, Q e v intersect, I n t P n  IntQ # ~ ,  

then they are parallel (see Sec. 1) (relations (2.1), (2.1'), Lemmas 2.6 and 2.7). 

Every element B of  the new partition v on (A~} is again decomposed, project- 

ing onto B all parallelograms Q e v which intersect with the translates T - t B  on 

the entire interval t e [-0, m] (this decomposition is denoted by ~(B)). The Markov 

property of  the parallelograms {At} for t = m guarantees the Markov property 

of  this last partition (Lemma 2.8). 

LEMMA 2.1. There exist a > 0 and a mapping F: 

W " ~ J x I , x ~ ( i , t ) ,  i ~ ( 1 , 2 , . . . , k ) = J ;  t~[O,z]  = I  

r . . such that x ~ AF(, ) F~(z) c D~ for all z ~ C~ , and j, F(x)tY) = I~(y) 

for  all y E D~ 

Now choose m so large that c ~-3~12r'J< a/v and set g = T -m, fl = 2 m. 

LEMMA 2.2. Let i = 1 , . . . ,k .  We can find points {y~j, j = 1,...,s,} in F~(xi) 

such that for  z~j = #(Yti): 

a) g(O ~ ~ o 

b) g(D ~ = U o De (zt~) (zzj). 
l ~_j <-s~ 

n - 1  n - 1  Next set Dt = l..J l~j<-ag De(~ij)(zij). 

2.3. For n > 1 and y~Fae(x~), [y, DT] has dense interior in F~(y) LEMMA 

and 

[y,07] c r~ 1 +  +~")'/~(y) = r~(y). 

Denote D~ = U n_~ o D~ c F~(x~), D~ = Int Di in F~(xi). 

LEMMA 2.4. I f  Z ~ I'Fae(xi), Dt], then, for  some j(z) ~ J ,  t(z) ~ [ -  q, z + q] and 

C~ containing g(z): 

gEz, Ot] = [a(z),Dj(z),(z)] 

and 

j(z) =j([x.z]). 

Similarly, working with g-1 and C O we have: 

LEMMA 2.2'. There are points us,, r = 1,...,pt in Y~(xi) such that for  

wt, = g -  1 (wi,): 
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a) g-I(cO)N j,-1 C o rw 

- I  0 W b) g - ' ( C  ~ c U 0~,,, C~,w,,)(,,). 
l < ,~_p~ 

- 1  o w We set C~ = U g~/w,.C::(,:,O(~.), 
l<r<pi  

n " - l c n - 1  /W " C~ = U g~w,,-etw,,)t ~,). 
l <=r< p~ 

LEMMA 2.3'. For n > 1 and zeF~(xi),  Jb-lFC" zl has dense interior in = "t'z L i ,  J 

F~(z) and ,I,-'FC". zl F~1+'"+a")a/Z(z) c-F~(z) " / 'Z L ~ ,  j C 

Denote C~ = U , . o  C~' c r~(xi), Ci = Int Ci in r~,(xi). 

LEMMA 2.4'. I f  W e [C~, F~(xi)], then, for some r(w) e J,  t(w) ~ [ -  q, ~ + q] 
and o g ~ :  [ C~(w)t(~,), D~(w)t(w)] containing 

- 1~b- 11- C w l  -I g ~.~ ~ ~, ~ ~ # ~ o - , ~ [ C , ~ ) , c ~ ) ) , g - ~ w ] .  

We now set A~ = [Q,  D~], i = 1 , . . . ,k ,  A~ = IntA~, As = T - ~ & ,  

xt_ q ,+~ = {Ai, t e [ - q ,  z + q],  i = 1, . . . ,k}. Consider the system of parallelo- 

grams 9.I = {A~, i = 1, . . . ,k}. 

Lemmas 2.4 and 2.4' combine to give: 

LEMMA 2.5. I f  y eA i ,  then, for some E = Ajtl ext-a,,+qj containing g(y), 

g[y,D~]= [g(y),Dj,], and for some A,,2 ext_q,,+q] containing g- ly ,  g-1 

~J; ' [  Ci, Y] = r ;-1,y[ C,t~, g - 'Y] . 

Let V~= U '+2q "r-'A~. F o r P e  deno teK v { i : V ~ r 3 P r  t = - 2 q  ~t / r  - 2 q ,  ~ + 2 q ] ,  

Take i e Kp, x e V~ (3 P and A u containing x for some t. Consider the projections 

Pi = [CI.:De,] ~- P of the parallelograms A,  on the parallelogram P.  Denote 

Ri = { j~Ke:Pi  r ~ ~ } .  Let 

Zp=PI  U ( U D,(x) U U Ce(y)). 
i e K p  eOCp~ y e O D p t  

(2.1) 

For y e Z e ,  set R(y) = U e,~y Ri and consider: 

Sc(y ) = {j e R(y): [y, D e,] 9 y} 

Hc(y) = {j e R(y): [y, Dej ] ~ y} 

D(y) = f]  Int[y, De~l/ U [y, Dp~]. 
j e Sc(y) 1 �9 Hc(y) 

Similarly, 



100 

(2. :3  

M. RATNER Israel J. Math., 

Se(y ) = {j ~ R(y): [Cl, j,y] ~ y} 

He(Y ) = {j ~ R(y): [Cej,y] ~ y} 

C(y) = [.J In t [Ce j ,y ] \  U [Ce/,y]. 
j r Se(y) j e He(y) 

Set B(y) = [C(y),D(y)]. Repeating the reasoning of [5, Lemmas 20, 21] we 

can prove: 

LEMMA 2.6. I f  y, z ~ Zp and B(y) ~ B(z) # (2~, then B(y) = B(z). 

LEMMA 2.7. The family v~ = {B(Z),z~Zp} is a finite partition of P into 

parallelograms. 

Construct the partition Ve for all P c  xt_zq,~+2q~ and denote: 

m+ 2q 

v = {Qeve ,  Pe~r_2q,,+2ql}, Z = W" 1 [,.J [,.J T -t OQ. 
Q e v  t = O  

Take A~egA, Beva, ,  Bt = T- tB,  z e B t ~  Z and set: 

~(z) = { P ~ z :  Pe~c_q,,+ql } 

~(B,) = {PeK(z), z~B, nz}  

v(Bt) = {BtQ: Q e v e, P e ~(B,)} 

J,(z)= U B,Q 
BtQ ~Z 

where BtQ is the projection of Q o n  B t .  

By the construction of re, the family 

~(B,) = {J,(z), z e B, c~ Z} 

is a finite partition of B t into parallelograms. Consider the product of partitions: 

171 

a(B) = V T'~(Bt). 
t = O  

For y c B n Z ,  set 

vt(Y) = {Q,: BtQ,~ T - ' y ,  BtQ, ev(Bt) } 

v(y) = {Qt ~ v,(y): 0 < t --- m}. 

The partition a(B) coincides with the partition: 

{ ~ Tt(B,Qt) = ~ B(TtOt); y e B k 3 Z } .  
O* ~ v(y) (2t s v(r) 

Consider the system of parallelograms 9Jl = {P e a(B), B ~ va, , i = 1, . . . ,  k}, 

f~=f. 
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LEMMA 2.8. The system ~ is Markovian for  the f low {Tt} .  

PROOF. Let x ~ Int  P i n  f -  t(Int  P j) (~ Z ,  Pi, Pj ~ 9~, l~(x) = s(s > 2q).  Set 

P~ = P(x) = [Ce(x) ,De(x) ] ,  f ( x )  = y ,  Pj = P( f (x ) )  = P(y) = [Ce(y ), De(y)] 

and assume that  P(x) ~ ~(B(x), (P(y) ~ ~(B(y)), B(x) ~ yak, B(y) E va., AR, A~ ~ 9~ 

By the definition of  P(x) and P(y) ;  

De(x) = ~ T'DQt(T - t  x) 
Q r ~ v(X) 

D e ( Y ) =  ~ TtDQt(T-ty) = 
Qt �9 v(y) 

= Dn(y)(Y) ('] ('] Toe; T - t y ) .  
(2.3) ~e~ ~ ~ (y), t=> ~ 

We shall prove that  in (2.3): 

De(y) = ~ TtDQ,(T-ty) .  
(2.4) re, ~ (y) t>=~l 

To  this end it is sufficient to prove that 

D~(y)(y) ~ ~ TtDe, (T-~y) .  
(2.5) ~e, ~ ~(r) t >-_ ~ 

Return to the expression for In tB(y ) ,  B(y)e  va. as given by (2.1) and (2.1'). 

Let  n s R ( y )  and let Pn be the project ion o f  A.t = T - t A . ,  A. = [C . ,D . ]  on A,. 

Then,  for  some t - q  < t(y) < t +  q, we have Tt(y)ye [F~e(x.),D.]. By L e m m a  

2.5, there exists E(y,n)e~t_q,.+ql containing T-m(Tt(Y)y) such that  

T-m[Tt(r)y, Dn] ~ [T  -m+t(r) y, Dr(,,,) ] . 

Denot ing  r-'('~[r'('~y,O.] = [y,D,,(,)] , we get: 

(2.6) [y,  D,t(r) ] = Tr, - ,(y)[T-,,+ t(r)y, DEO,.)]. 

Since E(y, n) e tCtq_ ~+ql, there exists Q -m+ t(r) e V~(r.,) such that  

[y,  D,,O,)] ~ T"- ' ( ' )D e . . . .  (y)(T -m+ t(Y)y). 

The inclusion (2.5) now follows from the fact that  (2.6) is true for all n e R(y) 

and m -  t (y )> s. This proves (2.3). 

We rewrite (2.3) as: 

De(y) = N 
{Qt ~ v(x) ,O < t < m - s }  

Tt+~DQ,(T-tx) = 

-_ T �9 ["] TtDQt(T - tx). 
{Qt ~ v ( x ) , O < t < m - s }  
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From (2.2) and (2.7) it follows that 

(2.8) T"De(x ) c De(y ) . 

This proves the Markov condition (1.2). The Markov condition (1.3) can be 

proved similarly. [] 

Let 9~ be a Markovian system; set P~a(x)= P n f -~Q for xePe932and 

f x  ~ Q e~;J~. Then the system ~ = (P~(x), x ~ M} is also Markovian, and l~(x) 

is continuous on the open parallelograms of this syetm. Therefore, the closure 

V(x) of I..J y~t,,tem(x) [-J z~(,) = {V(x) ,x~M} is t=o TrY is a c-parallelepiped, and/ t  

a Markov partition, as required in Theorem 2.1. 

REMARK. We can choose the initial system 920 in such a way that for some 

periodic point Wo ~ Int P, P ~ 920, we havefnoW o = Wo. Then, if the m in Lemma 

2.1 is sufficiently large, it is c'ear from the construction that this property remains 

valid for the Markovian system ~ .  It is obvious that then Wo e .~t~ (see Propo- 

sition 1.2). 

3. Estimation of the measure of the boundary: HSlder condition 

We now assume that the flow {T t} is of class C 2. We shall prove, as in [14] 

for the case of C-diffeomorphisms, that the sets At = [Ct,Di] obtained by the 

above limit procedure are indeed parallelograms in accordance with Definition 

1.2. This definition requires that the sets C~ and Dt be admissible on the leaves 

Fe(x~) and Fe(xt), respectively. We shall prove that the boundaries OCt and 8Di 

have Lebesgue measure zero on F~(xt) and Fc(x~). Then, obviously, the sets 

C(y) and D(y) in (2.1'), obtained from {C,} and {D,} by finite operations of 

intersection and complementation, will also possess this property. The same 

holds for the sets {Cp}, {De} for all P in the Markovian system ~(#) .  

In this section we shall also prove that the function 1~0, ) satisfies a H61der 

condition on every continuity component. 
We first indicate a few auxiliary facts concerning the properties of C-flows 

of class C 2 (see [2], [4]). Let A'c(y) denote the Jacobian of the transformation 

taking Riemannian volume Sc on F~(y) into Riemannian volume on Fc(Tty). 

Since W ~ is compact, there exists a constant K1 > 0 such that for all y e W" and 

t [o, 13 

K 1 _~ Ate(y) __< 1. 

Since the flow is of class C z, Ate(y) satisfies a Lipschitz condition on Fc(y), 
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with a constant independent of y. Therefore, for all t ~ [0,1], Yl,Y2 6 F~(y), 

and a constant K2 > 0, 

(3.1) I At~(Yl"-~)- 1 I < K2dc(Yl'Y2)" 
A'~(y2) 

Now let D c F~, diam~D < m,  and let {tk} be an increasing sequence of 

positive numbers tending to 00, to = 0, h -  h-1 < 1. For yx,yz e D, consider 

the quotient 

A~(Yl, Y2) = 
A t i l t .  ~tA t2 - t l [qr , t l~ .  ~ A t n - t n - -  l [ r r ' tn -  l~o 

c l, Y l]ac  ~,l y l ] , "%tac  ~ ~t Y l l  

N2 (y 2)A~-t ~( Tt 'y 2) , ..., -~A t'-t" - '( r t ' -  'Y 2) 

Since d~(Tt'yl, T t ' y 2 ) <  cdiam~D'2 t', it follows from (3.1) that 

I Atc~+l-t'(Tt'yx) 11 =< KadimacD'2 t' 
l ~  + l - t ' (  Thy  2) 

where Ka = cK2. 
Therefore, 

(3.2) 
A~(diamc D) l~ (1 Ka.2tJdiamcD) < ~(v Y2) < = _ A . _ .  = 

( j = t )  

oo 

< H (1 + K3"~:~diamcD) = A + (diam~D). 
j = l  

Since {tk} increases as k ~ oo, the product in (3.2) is convergent. 

Similarly, let Ate(z) be the Jacobian of the transformation at z taking Rie- 

mannian volume on Fe(z) into Riemannian volume on Fe(T-tz) and C c Fr 

diameC < oo and zl, z2 ~ C. Then 

A~-(diameC) = 

< 

i • i ( 1  -K4.2tJdiameC) < A~(zl, zz) < 
j = l  

I • ( 1  + K4"):JdiameC) = A+(diame C) 
j = 2  

where K4 > 0 is a constant. 
Now, for admissible sets A, D c F~(x), consider 

S,(Tt"A) I he2(x).At2-t'(T"x) ... At;-t,-,(T t-- 

Sc(Tt"D) 

I x)dSc(x) 

f ? , ,  t ,-t ,  t~ At.-t ,_,(Ttn- x)dSc(x) c (x)/~ c (T x) ... 
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It follows from (3.2) that for any t, 

A~(~,) .... SeA < SdTt"A) <_ A~(y) S~A 

A+(y ) SeO = Sr AT(? ) S~D" 

Since A~-(~) and h~+(~,) tend to unity as y ~ 0, we have 

Se(TtA) S~A SeA 
Sr S~D ] < r S~D 

where r 0 as 7 ~ 0, t > 0. 

Similarly, for admissible B,  C ~ F~(x), 

f S~(T-'B) SeB I Se B 
Se(T_tC) Se C < ~e(~)" Se C 

where limr_, o Ce(~') = 0, t > 0. 

Consider on r~(x) the G-isomorphism r ~ ( x ) ~  [y,F~r(x)] (for the notation, 

see Section 1), r~e(x) = y e Gre(X). Besides the measure Se on F~r(x), we consider 

the measure ge obtained by transferring Riemannian volume on F~(y) to Fc(x) 

by the transformation n~ -~. Since the foliation G e is absolutely continuous, the 

measures Sc and S~ are equivalent. Let I(x) be the density of Sr relative to Se 

at the point x.  The function I(x) is continuous, and for every e > 0 there exists 

61 = St(e), independent of  x,  such that for any two measurable sets Dx, Ax ~ F~(x) 

S~(Dx) > O, Dy = [y, Dx], Ay = [y, Ax], if de(x,y ) < 51 then 

S~Ax SeAy I SeA~ 
S~D~ S~Dy < 2~ ScD~" 

Similarly, for measurable sets B,,  C, ~ F~(u), Se(C,)> O, Bo = [B,,v], 
co= [c., v], ddu, v) < 

SeBu SeB~ I SeB" 
SeC ~ S~C~ , < 2e SeC. 

In addition, for any 0 < g < 1 there exist 3 = Z(g) < ~ and T = ?(g) > 0 such 

that for all x, y with de(x, y) < Z and u, v with de(u, v) < ~, t e [0,/']: 

(3.4) 
S~(T-t Ay) S~A,, ! S~Ax 
Sc(T-,D-y )-  SOD"--- ~ < g ScD~ 

l SeT-' o SeB  J S B,, 
SeT-tCv SeC . < g SeCu" 
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We now return to the system of parallelograms 9.[~ A~~ [Ci~176 
i -- 1 , . . . ,k},  with which we began the successive approximation procedure. We 

choose C o c r~(xi), D o = F~(xi) so that max x ~M l~o(X) = L < 1/~ (for the nota- 

tion, see Section 2). Set: 

to~ {Ai~ ~ = y - t A  ~ t ~ [ 0 , 2 L ]  i =  1,-..,k} 

o {DiO:DO(y) T- t[y ,D~ y ~ C  ~ t ~ [ 0 , 2 L ] ,  i 1, .,k} 

o {Ci~ C~ T-Xtp~1[C~ v~D ~ t ~ [ 0 , 2 L ] ,  i 1, ,k}.  
o and o We choose a so that the diameters of the sets ~c tce are at most ~/2. For  

the successive approximations D~', C7, we set: 

r."~ = {Di"t: D'~t(y ) = T- t[y ,  D~'], y �9 C if, t e [0, 2El ,  i -= 1,. . . ,  k} 

= {C",: C;,(V) = ~ t [O, 2L], i= 1 , . . . , k } .  

For every n = 0, 1 , . . . ,  the sets of the systems ~c~ and tc~ cover each complete 

leaf of Fr and Fe, respectively. Moreover, by construction, T-"Dr (where m is 

large) consists of sets of the system ~c ~ T-"D. 2, of sets of ~J, ..-, T-"D'~ of sets 
"-~ Therefore T-m~ , o Moreover, the t% . D~ consists of sets of the system ~c~. 

boundary of the set T-~("-1)D~"is distant at most 7"c" 2" from the boundary of 

T-"("-~)D.~ -1. Our aim is to prove that the boundary of the limit set D~ 

has measure zero. To this end, we construct a decreasing sequence of sets 

W1 = Wz = "" such that N Wi = c~Oi and S~(Wi) < pS~(Wi_ 2) for some p < 1. 

To do this, it will be convenient to have on each complete leaf not a cover 

but a partition into admissible sets such that the measure of a small neighborhood 

of their boundaries is uniformly small. For  each parallelogram P c xo, we con- 

struct a partition ve ~ (see (2.1), (2.1')) as in Lemmas 2.6 and 2.7, and set 

v ~ = {Q = [C~, DQ] : Q c v ~ P c to~ We choose the initial cover 1[ o that for 

every Q c v ~ the sets D o and C o are connected and admissible. By the construc- 

tion of the system Vo, there exist finitely many parallelograms Q~ev o and 

tie[O,2L], i = 1, . . . , I ,  such that v o = {T-tQi: te[O, ti], i = 1, . . . , /} .  The sets 

of the systems 

o {D~2,(y ) T-t[y ,  DQ~], y e Co, t e [0, h i ,  i = 1,. . . ,  l} V c ~ = -  

and 

0 t v~ = {Cq,(v) = T - t ~ - I  [Ca, , v], v ~ Do. ,, t ~ [0, ti], i = 1, . . . ,  I} 

form a partition of every complete leaf on Fc and Fe, respectively. The sets 
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D ~ v ~ and C ~ v ~ are admissible and have diameter at most $/2 < 7/2. For  

A c F,(x),  let U,(A) denote the r-neighborhood of the boundary 0A on the 

leaf Fc(x). Similarly, we define U~(B) for B c  F,(x).  

LEMMA 3.1. There exist 0 < r, s < ~/2 and 0 < Pl,P2 < �89 such that for 
0 all D~v ~ C~v~. 

s~v,(D) 
S~-----ff- < Pl 

PROOF. 

seu,(c) 
Se------- ~ -  < P2 " 

(3.5) 

Choose ri, 0 < r~ < 3/2, so that 

Then, by (3.4), 

ScU,,DQ~ 1 
O< ScDQ, < ~ i =  1,2. 

ScT-'[y, U,,Dt2,] 1 
(3.6) 0 < < 

S~DtQ,(y) 

for all t r [-0, h], Y ~ CQ,. It is obvious that 

- - t  D t r~ = min dr [y, U,, Q,],ODQ~(y)) > O. 
- -  t r  

Therefore, for 0 < r < min r i we have U,(Dta,(y)) = T-t[y, U,,(De,)]. It then 

follows from (3.6) that for all D ~ v ~ 

0 < ScU,(D)__< 1 
SoD 2" 

This proves the first inequality of  (3.5). The proof  of the second is analogous. 

We now choose the number m figuring in our procedure to be so large that 

3.7" c. 2 m < min(r, s). Then: 

THEOREM 3.2. The limit sets Di and Cf are admissible. 

PROOF. We must show that Sc(SD~) -- 0 and Se(OC3 = 0. Consider the nth 

approximation D~. The set T-m"D~ lies in the leaf F~(T-m"x~) and is the union 
o of  sets in v,. We set 

lnn n ~n = {D: Dev  ~ dc(OD, OT D,) < 7} 

and 1~, = [,.J o ~ D .  The boundary t~(Tral, Vn) iS contained in the 2.), .  c2~-neigh - 
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borhood of the boundary of T-m("-I)D7 -1 , while the boundary 3(T -re(n-l) D~) 

is by construction in a c" V" 2"-neighborhood of OT - '("-  1)D~- ~. Therefore T'ffz, 

lies in the 3.y 'c.Z'-neighborhood of 3T-m("-I)Di n-~, and a for t io r i  (since 

3"?'c ' ,~" < r) in its r-neighborhood. Therefore Tml'rd, ~ LJ o~_IU,(D)  and 

TmI~n c2 l~ n_ t" Setting Wn = Tr'ff'., we have W, c W._ 1 ~ ' " .  We claim that 

S~(W,) < pS,(Wn-1), where p < 1. 

It follows from Lemma 3.1 that for D e # . ,  D n  Tmff',+t # 

S,(D f') TmI~,+ ,) S~(U,D) 1 
< - - < / ~  < 

Sr = SeD 2" 

We have W, = U o,~, Tm~D and W,+I ~ U o ~ T m U , ( D ) .  Consider the quo- 

tient S~(T"U,D))/Sc(T~"D). 

It follows from (3.3) that if ~ is so small that ~br < 1, then 

Sc(Tm"U~(D)) 2 ScU/D) 
< < 2 ~ < 1 .  

ScTmno ScO 

Finally, 

S,(W.+ ~) X S,(Tm"U~(D)) 

S,(Wn) = Zo,~n So(Tin"D) < 2~ p = -- 1. 

Since f~, W, ~ 0D~, it follows that Sc(OD,) = 0. One proves in a similar fashion 

that Se(OC3 = O. [] 

We shall now prove that the function I~ = I of the Markovian system 

~3 = {P, = [Ci,Di], i =  1,...,k}, Ci c Fe, Di c Fc, satisfies a H61der condi- 

tion on the open parallelograms (P,}. Note that the sets C~, D, are in general 

not in P~, and [C~, z] is c-isomorphic to C~ for any z e Di. The function l is 

constant on the sets [u, D~], and therefore the set of its values on IntP, is the 

same as the set of its values on any Int [Ci, z]. We fix Ci = [Ci, z] and consider 

on ~, the metric of the leaf Ge. 

THEOREM 3.1. The function l satisfies a Hiilder condition on IntC~. 

PROOF. Let Eik= {y~Int Ci: f (y)= Pk} We shall prove that the H61der 

condition is satisfied on each Eik. Let zc~: ~.i "-+ Ci be the c-isomorphism. For 

x e C,, we set p(x) equal to the unique point in the intersection Ge(x)f~C k 

nearest to x in G,(x) (recall that the sizes of the parallelograms Pk and their 
k. mutual distances are sufficiently small). Let nr Ck ~ Ck(f(Y)) be the c-isomor- 

phism. Then f (y)  = n~p rd~(y). The foliations Gr and Fc satisfy a H61der con- 
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dition; this is proved in [3]. The analogous assertion for C-diffeomorphisms 

was also proved in [8] and the proof carries over easily to flows. Hence each 

of the mappings n~, p and nk~ satisfies a H61der condition, and the same there- 

fore holds for f on E~k. Now let D be a differentiable disk containing E~k and 

transversal to the flow. Then ~b(y,t) = T'y is a diffeomorphism of D x [ - T , z ]  

into W". Since f (y)  = TZ@)y for y e E~k, it follows that t(y) satisfies a Lipschitz 

condition in f and consequently a H61der condition in y .  Q.E.D. 

REMARK. Let x ~ I n t ~ i ,  and consider ~ - ~ i c F e ( X ) .  Let q(z), z ~ , ~ l ~ i ,  
be a function defining a trajectory isomorphism ~ ,  i.e., ~,(z)= Tq(')z~ ~ .  

For u~C~, we define S(u)= Gc(u)Ur point nearest to u .  Then 

Cx = (ni~)-~S -~. The mappings S -a and (n~) - t  satisfy a H61der condition, so 
that the same is true of  r on C x ~  c F ~  in the metric of Fe. Therefore, as 

before, q(z) satisfies a H61der condition on r  In the sequel we shall some- 

times consider the metric on ~ ,  carried over by ~ from ~,~a~.  It is clear 

that the function l will then satisfy a H6lder condition in this metric as well. 

4. Symbolic dynamics 

As before, let M be the set-theoretic union of the parallelograms 

{Pi = [C~, D~], C~, Di c P~, i = 1, ..., k} of  a Markovian system ~ ,  considered 

in the natural topology, f~ = f :  M ~ M defined by f (x)  = Tt(X)x, 0 < l < l(x) 
< L  < oo. We consider on M a pair of partitions ~c = {De: [Y, Di], yeC~ 
i = 1,...,k} and ~e = {Ce: [C,,v], veDa. i = 1,.- . ,k}. We denote E = E c UE~, 

where 

P e ~  t = - o o  P e ~  , = - o o  

M1 = M n E,  2Q = M / M 1 .  M1 and/l~ are dense in M and invariant under f ,  
and moreover f is continuous on 21~. We consider on ~r partitions ~c = {/3c: 
D ~  h7r and ~ = {d~: C e C ~  }. Since ~ is a Markovian system, we have 

f"JDc(x) c D~(f"x) 

f-nCe(X ) c Ce(f-nx). 

For n > 0, we set Z~(x) = ~f-"JD~,~tf"x~,, ~.~(x) = f " ~ ( f - " x ) .  It is clear that 

~c" c '2~ "+I and Y."~ = ~,,+1. Let Z~"(x) and Z"~(x) be the cIosures in MofsetsY2~"(x) 

and ~ ( x ) .  We define the complete contractible leaf at x in 3~t to be 5~ (x) = 

U ~=o ~"(x). Similarly, we define Ee(X) in 3~t, and Z~(x), Ze(X)--the complete 

leaves at x in M.  The mapping f 1 37t takes leaves into leaves. 
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On the elements Dc c F c we shall consider the Riemannian metric dc and 

Riemannian volume Sc induced by imbedding in Fr Let Ce = [Ci, v], v ~ Di, 

x, ye  Ce and xl = 0~-~x, y~ = 0~-ly. Since ~ satisfies a H61der condition of 

some order e,  it follows that d'e(x, y) < A[de(xl, yl)]  ", where A > 0 is a constant, 

d'e the metric in Ge ~ Ce and de the metric in F,(v) with A and e the same for all 

Ce ~ ~ .  In the sequel it will be convenient to consider the metric and Riemannian 

volume on C~ carried over from tp;-~Ce by Or. This will enable us to make 

use of the convenient relation (4.1) for f - l ,  a contraction on C~ analogous to 

the contraction in the case of C-diffeomorphisms, without the exponent of the 

power on de(x,y). In this new metric, de(x,y) stands for de(xl,Yl). As before, 

let q = max~,y [q~(y)[, where q~(y) is defined by T~x(Y)y = ~ ~y for x, y e Ce, 

2q < l and 2 = )~-2q. Then: 

dc(f"x,f"y) < c~."d~(x, y) if x, y e Int Dc 

(4.1) d~(f-"x,f-"y) < c~."d~(x,y) if x, y e I n t C  e. 

Consider the partitions fl = {Pe~3} on M and /~ = {P o/~r,  Pe~3} on ]t~t. 

We introduce symbolic dynamics fo r f ( s ee  [5], [7]). 

For P, Q e fl, we define 

e(P,Q) = I 1, i f f ( I n t P )  c3IntQ ~ ,  

L 0 otherwise . 

Let flz be the set of all bilaterally infinite sequences (Pi)i~-o~ and 

f~(fl) c flz the set of all such sequences for which c~(Pi,Pi+l) = 1. We define 

a metric in flz by setting d(P ,Q)  = ~ i~z2-lqp(Pi,Qi), where 

p(P~,Qi) = l O' if P~=Q~, 
( 1, if PiT~Qi. 

Then f~ is a closed subset of the compact metric space fl z. We define the shift 

homeomorphism or: f~ ~ ~ by (e(P))~ = Pi-~. We shall show later that e is a 

topological mixing. 

LEMMA 4.1. There exists 6 > 0  such that if  diam Cp, d i a m D j , < 6  for 

P s fl , then for any x, y e 2ffl there exists m such that fmx and fray lie in different 

parallelograms of ft. 

PROOF. For ? > 0, we have 

G~(x)= {yeW":d(Ttx,  Tty)< ? t > 0} 
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G~(x) = {y e W": d(Ttx, T'y) <= ~ t N 0} 

where d is the metric in W". Let 7 be such that G~(x)n  G~(x)c  U ~=_~rtx 

for all x e W" . Then for any y ~ U [= _~ Ttx there exists t such that d(Ttx, Try) > ~, 

since otherwise y e G~(x) n G~(x) ~ U ~=_~ r*x. Now let 6 and y be so small 

that if d iamCe,  d i a m D e < 6  and x , y e P ,  then d(T*x,T~y)<=7 for all 

t e  [ - L , L ]  (l(z) < L) and P n U I=_~ r*u = u for all u e P .  Now, if for u, ve  

we h a v e f " u  a n d f " v  in the same parallelogram for all m, then for all t we have 

d( T~u, T~v)< 7, so that v~ ~ tL_:,Ttu, contradicting the choice of  6 and 7. 

This proves the lemma. 

Henceforth we shall consider parallelograms of sizes not exceeding 6. 

p ~o - o~f Int P~. con- LEMMA 4.2. For P = { i}i=_~o ~ f~, the intersection U o~ -i 

tains a single point. 

PROOF. We first prove that the intersection oo -~ n - o  o f  IntP~ is not empty. 

Denote A, = n "_ , f -qntPi  = r io_,  n n ~ = A"c3A~. Since the system of  

parallelograms is Markovian, it follows that for any ~'e(x) c P~ the intersection 

- 1de(x) n Pi-  x is not empty and f -  1 Ce(x ) c d~e(f - ix) .  Therefore, for each n 

the set A~ c Po is not empty and for any x ~ An' we have Ce(x) c A~'. Similarly, 

A', is not empty for any n and for any x e A" we have De(x ) c A', c Po. 

In the parallelogram Po,  each element De intersects each Ce, and so 

A~ h A "  = A, ~ ~ .  We thus obtain a decreasing sequence Ao ~ Ax = "'" of  

compact sets, and so n , > o A ,  -- n~-~of-qntP~ is not empty. 

Note that each An is a parallelogram. Now let x , y  ~ n - o f -  IntP,  and 

u,, v, e )~r such that u,, v, e A, and u, ~ x,  Vn "* y .  Then for all - n  < m < n 

and all k > n we have f"u ,  a n d f " v ,  in the same parallelogram P,, e ft. By Lemma 

4.l ,  it follows that d(Ttuk, T tvk)<~ for - -Ln <_ t < Ln and k _> n; hence, 

since T is continuous, d(T t, T 'y)  < ~ for - L n  < t < Ln.  This is true for all n; 

hence for all t we have d(Ttx, Try) < ~ and so x = y.  This proves the lemma. 

Define a mapping ~: f~ ~ M by n(P) = n~=_~of-qntP~.  

THEOREM 4.1. The mappino ~ is continuous and "onto"  and f o  rc = rco cr 

PROOF. Let Pk be a convergent sequence in f~. This means that for every 

large n there exists N such that for all k > N,  (Pk)~ = (PN)~ for all i ,  

- n  < i < n. Then 7r(Pk)E n " _ , f - q n t ( ? u ) ~  = An for k > N.  It is clear from 

(4.1) that the sizes of  the parallelograms A, tend to zero as n ~ oo. Therefore 

the sequence rc(Pk) is convergent in M.  This proves continuity. 
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Now let x e 3~r such that f i (x )  ~ Pi(x). Then f i (x)  ~ Int Pi(x) :~ f -  1 Int Pi + 1 (x)) 

and consequently P(x) = {Pi(x))e f l .  Since x E n f - i I n t P i ( x ) ,  it follows from 

Lemma 4.2 that n(P(x)) = x .  Thus 3~t ~ n(t)) and 3~r is dense in M.  Since n(f2) 

is compact, this implies that Tc(f~)= M.  The relation f o  rc = n o  tr follows 

from the definitions of n and tr. [] 

REMARK 1. It is evident from the proof that n-1 is defined on 2~r. 

REMARK 2. Consider on .~r the partition fl- :/~- = ~/7=of-ni l .  The proof of 

~=of fl = e (the partition into points on 2~/) and Lemma 4.2 shows that k/oo ~-- 

f f l - > / ~ - ,  /~ -=  ~c. (See [12]). 

W e shall now prove that the transformation f is transitive. Let w o e 2Vl be a 

periodic point of the flow Tr:f(Wo) = Wo, T~ = Wo, l o > 0 (see the remark 

at the end of Section 2). By the  Markov property, f -~Dc(wo)~  IntD~(wo). 

Consider the leaves 

Y-o(Wo) = Uf-iD~(Wo) 
i = 0  

oo 

~(Wo) = (.J fi~e(Wo). 
i = 0  

LEMMA 4.3. The leaves Y2c(Wo) and Y.e(Wo) are dense in M .  

PROOF. Note first that if y e 3~r lies on a trajectory Ttyo, Yo e/Se(Wo) , then 

obviously y eZ,(Wo). 

Let O~(wo) be the connected component of Dc(wo) containing Wo: Oc(wo) 

= IntO~(wo) in Fc(wo). By the Markov property, f I n t O ~ ( w o ) c  O~(wo) , or 

T -z~ O~(wo)~ O~(wo) and by the expansion property 

lim (T-kl~ = F c ( w o )  , 
k ~ o o  

where k > 0 is an integer. ~ = lim(T-U~ is dense in F~(wo). 

Let x e I n t P  and let O(x) be a neighborhood of x in P .  We denote 

O~(x) = U ~=o TtO(x) for small e. Since Fc(wo) is dense in W n, there exists 

zer'~(Wo) such that zeO~(x).  Then y = T-~z~O(x)  for some 0 _< z < e. The 

neighborhood O~(wo) contains a point Yo such that T-kt~ o = z for some k > 0. 

The points Yo and y lie on the same trajectory, therefore y e 3~r and y ~ ~(Wo). 

The proof that ~(Wo) is dense is analogous. [] 

REMARK. It is clear from the proof that ~'e(Wo) -- U ~o -n ~ n=Of Oc(WO) C ~'c(WO) 
is dense in M.  
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Let y ~ Ca(W0) such that D~(y) and De(wo) are e-isomorphic. Since f is conti- 

nuous on A~r, it follows from the Markov property that ~(Wo) and f-mbc(y ) 
are e-isomorphic. Moreover, 

m 
max de(z , rOe(Z)) = de(Zc (Wo), f - m  De(Y)) < 

zG r, mc(W o ) 

cde(Dc(wo),Dc(y)) " ~m. 

DEFINmON.fis said to be a topological mixing on M if, for any two nonempty 

open sets U1, U2, there exists ko > 0 such that fkU~ n U2 ~ ~ for all k > k o. 

THEOREM 4.2. f is a topological mixing on M. 

PROOF. Since ~,~(Wo) and ~,e(Wo) are dense in M, there exist m, n > 0, zl e U1, 

z2 e U2 such that zl e ~,~'(Wo), z2 ~ '~e"(Wo). Let r be the distance from zl to 

a(Ce(Zl) c~ U~) in the metric de. Let 0~(z2) be the component of s Us 

containing z2. Then y =f-%2eOe(Wo) and the intersection V~(y)= Oc(y) 

n f-'O~(z2) is open in O~(y) and contains y (O~(y),Oe(wo) are components in 

/3c(y), ~e(Wo) , respectively). 

Since the leaves of D~ are expanded by f - ~ ,  there exists q > 0 such that 

that f-qVc(y)~Oc(f-qy).  O~(f-qy)is e-isomorphic to O~(Wo). For all N, 

~ and f-sO~(f-"y) are e-isomorphic, and if N > No, where c~N~ 

O~(wo)) < r, then 

d~(Z~, f-uO~(f-qy)) < r. 

Therefore, for all N > max(m, No) there exists uNef-NOc(f-qy) such that 
de(UN, z l )  < r ,  and so UNe U1. Since 

f-NOc(f-qy ) ~ f-(N+OVc(y) c f-(q+N+")Oc(Z2) , 

it follows thatfN+q+"uNeOc(Z2)c U 2 . Now, if k o = N +  q + n, then for all 

k >  ko, 

fkU1 A U2 ~ ~ .  

This completes the proof. [] 

THEOREM 4.3. The shift homeomorphism a on fl is a topological mixing. 

PROOF. (See Bowen [5]). Let U, V be nonempty open sets in f/ .  For some n 

there exist (2n + 1)-tuples (F_,,.-. ,F,) and (G_,,..., G,), F~, Gi~fl, such that 
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V =  V, = { P e n :  Pi = Gi 1i] =< n} ~ ~ .  

Let U2 ~ .  r - k T n t  ~" = I l k = - , s  * --k = V2 = N k = - ,  f ' k I n t G k  �9 U2 abd V2 are open in 

M. As in Lemma 4.2, U2 and V2 are not empty, n-*(U2) c U~ and ~z-*(V2) c Vi. 

By Theorem 4.1, 

tyku A V =  aku1 A V1 ~ o'k(~z- 1U2) A/r" 1V2 ~ ~ - l ( f k w 2  A V2). 

By Theorem 4.2, there exists ko > 0 such that f k u  z N Vk r ~5 for k > ko, and 

then also akU n V r ~ .  []  

We now define a function F on f~ by F(co) = lQc(co)). It is clear that F satisfies 

a H61der condition on f~. Set 

l~" = ((co, t): co ~ f~, 0 __< t < F(co), (co, F(co)) = (aco, 0)} 

and consider the natural topology on I~ induced by the direct product f~ x t. 

We define a flow in I~ by 

st(co, u) = t (co, u + t) ,  t < F(co) - u 

t (t~co, u + t - F(CO)) t >_- F(co) - u 

for t < info,~nF(co ). 

For  other values of  t, S t is uniquely determined by the condition that (S  t} be a 

one-parameter group of transformations. The mapping ~b: I~ --. W defined by 

~b(co, t)  - -  TtTz(co) is continuous. Moreover, as shown above, the set H of all 

points w ~ W at which ~ -  ~ is not well defined has Lebesgue measure 0. If/~ is an 

St-invariant measure on l,P such that #(~b-*H) = 0, we can carry it over to W 

by means of ~b, ~b# = v, thus getting an isomorphism of  the flows T'  in (W,v) 

and S t in (/~',/0. This was the method used by Sinai in [15] to construct Gibbs 

measures for C-flows, on the assumption that Markov partitions exist. 
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